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Abstract. Given a Convex Quadratic Multicriteria Optimization Problem, we show the sta-
bility of the Domination Problem. By modifying Benson’s single parametric method, which is
based on the Domination Problem, we are able to show the existence of an efficient com-

promise arc connecting any two efficient points. Moreover, we deduce an algorithm which
realizes the modification in polynomial time.
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1. Introduction

In this paper, we study continuity properties of the Multicriteria Optimiza-
tion Problem

MP : max !ffðxÞjx 2 Xg:
Our investigation will be focused on the Convex Quadratic Multicriteria
Optimization Problem (QMP), i.e., X � Rn is a convex polyhedron and
the concave quadratic functions f ¼ ðf1; . . . ; fqÞT : Rn ! Rq are to be maxi-
mized on X. This problem class frequently arises in Stochastic Multicrite-
ria Optimization [4] and its various applications to Risk Management
[18].
If no further information about the preferences of the decision maker

(DM) is given, then the solutions to the MP usually considered are efficient
points. However, sometimes the DM requires the solution in addition to
dominate a ‘‘least’’ outcome value v 2 fðXÞ � R

q
þ

MPðvÞ: max !ffðxÞjx 2 X; fðxÞPvg;
i.e., f is to be maximized on XðvÞ, where
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XðvÞ :¼ fx 2 XjfðxÞPvg:

This parametric MP will be referred to as the Domination Problem, and we
will consider the efficient set as it’s global solution set. Again, if the target
functions are concave quadratic and the constraint set is a convex polyhe-
dron, the Domination Problem will be denoted by QMPðvÞ.
In this context, an important property is the Domination Property, that

is, the Domination Problem is solvable for any v 2 fðXÞ � R
q
þ. Helbig [12]

has shown that for the QMP, fðXÞ � R
q
þ is closed convex, and Henig [13]

has shown that under this precondition, the Domination Property holds if
the set of efficient points is not empty. In this discussion, we will generally
assume the efficient set to be nonempty, thus yielding the Domination
Property for QMPðvÞ.
Another important property is the stability of the Domination Problem,

i.e., the continuity of its efficient set mapping. This property is particularly
desirable, for minor errors of the least outcome value (errors in preference
estimation or numerical computing) should only result in minor variation
of the efficient set.
Based on the Domination Problem, interactive algorithms for decision

support in Multicriteria Optimization have been developed. Benson’s
method [3, 8] bears the distinct advantage of computing only efficient
points (contrary to weakly efficient points, cf.[5]). In each step k 2 N, the
DM fixes a least outcome value vk 2 fðXÞ � R

q
þ and a solution xk to the

weighted sum scalarized Domination Problem is computed. The procedure
is repeated until the DM accepts xk as his preferred solution to the MP.
Guddat and Guerra [10] analyzed the method for single parametric varia-
tion of the outcome value, i.e., parametrically solving the weighted sum
scalarized Domination Problem on the line ½vk; vkþ1� � fðXÞ � R

q
þ, for this

generates additional information about efficient compromises between vk

and vkþ1. This information can be employed to aid the DM in selecting a
solution when he/she is unsure about his/her preferences, or to find com-
promises between the extreme positions of two DMs. We will refer to this
procedure as Benson’s single parametric method.
Concerning this parametric procedure, the existence of a continuous

selection arc for the efficient set mapping is of special importance, for in
this case the DM is able to continuously adjust his preferred solution by
adjusting the outcome value. This selection arc will be called efficient com-
promise arc. In the general MP, Guddat and Guerra [10] have investigated
several conditions for the existence of such an arc.
We will first show the stability of the Domination Problem and of the

weighted sum scalarized Domination Problem for the QMP. By applying
this result to the single parametric Domination Problem, we are able to
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deduce the existence of an efficient compromise arc connecting any two
efficient points without the conditions imposed in [10].
Moreover, we show that by minor modification, Benson’s single para-

metric method can be employed to compute efficient compromise arcs,
and that the modification’s numerical realization only requires polynomial
time.

2. Preliminaries

2.1. NOTATION

Throughout this discussion, let Rq be associated with the Euclidean norm
k � k. R

q
þ stands for the nonnegative orthant in Rq. We denote the (open)

Euclidean ball in Rq of radius e > 0, centered at z 2 Rq, by BeðzÞ. int M
and cl M stand for the interior and closure of a set M � Rq, respectively.
For A;B 2 Rn, let Aþ B :¼faþ bja 2 A; b 2 Bg. Notions of convex analy-
sis (e.g., convex, concave, polyhedron) and elementary results will be
employed without reference, standard texts (cf. Rockafellar’s excellent
monograph [19]) discuss those results that we use. Here and in what fol-
lows, denote the kernel of a m� n matrix A 2 Rm�n by ker A, the transpo-
sition by AT, and the level set mapping of a function f : X! Rq by
f�1ðzÞ :¼ fx 2 XjfðxÞ ¼ zg; z 2 Rq. If an assumption holds without loss of
generality, we will use the abbreviation ‘‘w.l.o.g.’’.

DEFINITION 2.1. Let V � Rq and w:V! 2Rnn[ be a set-valued mapping.
w is called

(C1) upper semicontinuous iff for each v 2 V and for each neighborhood
W of wðvÞ there is a neighborhood U of v such that wðV \UÞ �W.

(C2) lower semicontinuous iff for each v 2 V, w 2 wðvÞ and for each neigh-
borhood W of w there is a neighborhood U of v such that
wðuÞ \W 6¼ [ for all u 2 U \ V.

(C3) continuous iff w is upper and lower semicontinuous.

2.2. MULTICRITERIA OPTIMIZATION

For z0, z1 2 Rq, define z1Pz0 (resp. z1 > z0) by componentwise ‘‘P’’ (resp.
‘‘>’’), define z1jz0 by z1Pz0 and z1 6¼ z0. We will employ the following
efficiency concepts:

(E1) Efficient points x0 2 X: There is no x1 2 X such that fðx1Þjfðx0Þ.
(E2) Properly efficient points x0 2 X: There is M > 0 such that for each

i 2 f1; . . . ; qg and each x1 2 X with fiðx1Þ > fiðx0Þ there is
j 2 f1; . . . ; qg, j 6¼ i, satisfying
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fjðx1Þ < fjðx0Þ and ðfiðx1Þ � fiðx0ÞÞ=ðfjðx0Þ � fjðx1ÞÞOM

(E3) Weakly efficient points x0 2 X: There is no x1 2 X such that
fðx1Þ > fðx0Þ.

The set of efficient (respectively properly efficient, weakly efficient) points
x0 is denoted by EfðXÞ (resp. PfðXÞ, WfðXÞ), the set of efficient (resp. prop-
erly efficient, weakly efficient) outcomes fðx0Þ is denoted by EðfðXÞÞ
(respectively PðfðXÞÞ, WðfðXÞÞ). The following theorem is due to Arrow,
Barankin and Blackwell [1].

THEOREM 2.1. Let X � Rn be convex, f : X! Rq be ðcomponentwiseÞ
concave. Then,

PðfðXÞÞ � EðfðXÞÞ � cl PðfðXÞÞ:

The optimal sets Xk of the weighted sum scalarized problem

MPk : max !fkTfðxÞjx 2 Xg; k 2 R
q
þ n f0g; ð1Þ

are usually considered to characterize properly and weakly efficient points
(cf. [9], [15]).

THEOREM 2.2. Let X � Rn be convex, f:Rn ! Rq be concave. Then,

PfðXÞ ¼
[

k2intRq
þ

Xk; WfðXÞ ¼
[

k2Rq
þnf0g

Xk:

In the following, set Z :¼ fðXÞ and ZðvÞ :¼ ðZ� R
q
þÞ \ ðvþ R

q
þÞ,

v 2 Z� R
q
þ. Then in general, ZðvÞ 6¼ fðXðvÞÞ, but the efficient points coin-

cide (cf. [8]).
Choose k 2 intRq

þ. Then by XkðvÞ, respectively, ZkðvÞ :¼ fðXkðvÞÞ,
denote the optimal set, respectively the optimal outcome set, of the
weighted sum scalarized Domination Problem

MPkðvÞ: max !fkTfðxÞjx 2 XðvÞg; v 2 Z� R
q
þ: ð2Þ

Since for the QMP, Z� R
q
þ is closed convex and we assume EðZÞ to be

nonempty, it is well known (cf. [13]) that ZðvÞ is compact, hence the sets
ZkðvÞ and XkðvÞ are nonempty for each v 2 Z� R

q
þ. In the course of our

investigation, the target function f : Rn ! Rq of the QMP will be generally
assumed to be given by
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fiðxÞ ¼ xTCixþ ci
T
xþ ci; x 2 X;

where Ci 2 Rn�n is negative semidefinite, ci 2 Rn, ci 2 R, i ¼ 1; . . . ; q. We
will require the following theorems (cf. [14]).

THEOREM 2.3. Let X � Rn be a convex polyhedron, r 2 Rn n f0g. Then, the
mapping p : X! R [ f1g defined by pðxÞ:¼ supft 2 Rjxþ tr 2 Xg satisfies
exactly one of the following assertions:

(i) ipðxÞ ¼ 1 8x 2 X.
(ii) pðxÞ <1 8x 2 X and p is continuous.

THEOREM 2.4. Let X � Rn be a convex polyhedron, f : Rn ! Rq be concave
quadratic. Moreover, assume that ðzkÞk2N � EðfðXÞÞ converges to z 2 EðfðXÞÞ.
Then, for each x 2 f�1ðzÞ there is a selection sequence xk 2 f�1ðzkÞ, k 2 N,
converging to x.

3. Stability of the Domination Problem

In this section, we will discuss continuity properties of the efficient outcome
set mapping EðZðvÞÞ and the optimal outcome set mapping ZkðvÞ for the
QMP.

DEFINITION 3.1. The Domination Problem is called stable iff the mapping

v 7!EðZðvÞÞ ¼ EðZÞ \ ðvþ R
q
þÞ; v 2 Z� R

q
þ;

is continuous.

Obviously, for each v 2 Z� R
q
þ, MPkðvÞ constitutes a quadratic optimi-

zation problem with (concave) quadratic target function and (concave)
quadratic constraints.

PROPOSITION 3.1. Let Ci 2 Rn�n be negative semidefinite, i ¼ 1; . . . ; q, and
k 2 int R

q
þ. Then,

Pq
i¼1 kiCi is negative semidefinite, and

ker
Xq

i¼1
kiCi

 !
�
\q

i¼1
ker Ci:

Proof. Obviously, xTð
Pq

i¼1 kiCiÞxO0 holds for x 2 Rn. Moreover, for
x 2 kerð

Pq
i¼1 kiCiÞ,

Xq

i¼1
ki|{z}
>0

xTCix|fflffl{zfflffl}
O0

¼ xT
Xq

i¼1
kiCi

 !
x ¼ 0:
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This implies xTCix ¼ 0, and by negative semidefiniteness, Cix ¼ 0,
i ¼ 1; . . . ; q. (

LEMMA 3.1. Let X � Rn be a convex polyhedron, f : Rn ! Rq be concave
quadratic, k 2 int R

q
þ and v 2 Z� R

q
þ. Then, for all x0, x1 2 XkðvÞ,

r :¼ x1 � x0,

(i) iCir ¼ 0, i ¼ 1; . . . ; q,
(ii) ð

Pq
i¼1 kiciÞTr ¼ 0.

Proof. Suppose, x0, x1 2 XðvÞ are optimal for the target function

QðyÞ :¼ yT
Xq

i¼1
kiCi

 !
yþ

Xq

i¼1
kic

i

 !T

yþ
Xq

i¼1
kici; y 2 XðvÞ:

Then, concavity of Q implies

Qðx0ÞOQðx0 þ trÞ; t 2 ½0; 1�;

and optimality of x0 implies ‘‘=’’. Hence,

Qðx0Þ ¼ Qðx0Þ þ t 2x0
T Xq

i¼1
kiCi

 !
rþ

Xq

i¼1
kic

i

 !T

r

 !

þ t2rT
Xq

i¼1
kiCi

 !
r; t 2 ½0; 1�;

and by the Fundamental Theorem of Algebra,

(i) irTð
Pq

i¼1 kiCiÞr ¼ 0,

(ii) 2x0
Tð
Pq

i¼1 kiCiÞrþ ð
Pq

i¼1 kiciÞTr ¼ 0.

Now by negative semidefiniteness of
Pq

i¼1 kiCi, (i) implies r 2 ker
Pq

i¼1 kiCi,
and moreover, (ii) implies r 2 kerð

Pq
i¼1 kiciÞT. Thus, the lemma is a conse-

quence of proposition 3.1. (

THEOREM 3.1 Let X � Rn be a convex polyhedron, f:Rn ! Rq be concave
quadratic and k 2 int R

q
þ. Then, the mapping v 7!ZkðvÞ, v 2 Z� R

q
þ, is con-

tinuous.

Proof. Since Z� R
q
þ is closed convex, it is easily seen that ZðvÞ, v 2 R

q
þ, is

upper semicontinuous. Since in addition, ZðvÞ is compact convex and kTz,
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z 2 ZðvÞ, is linear for all v 2 Z� R
q
þ, upper semicontinuity of ZkðvÞ is a

consequence of elementary parametric optimization theory (cf. [2]). We will
show that the mapping is also lower semicontinuous, i.e., for all
v 2 Z� R

q
þ, each w 2 ZkðvÞ is a limit point of a selection sequence in

ðZkðvkÞÞk2N, where ðvkÞk2N � Z� R
q
þ converges to v.

Choose v 2 Z� R
q
þ, w 2 ZkðvÞ and ðvkÞk2N � Z� R

q
þ converging to v.

Moreover, select zk 2 ZkðvkÞ, k 2 N. Since ZkðvÞ is compact and the map-
ping Zk is upper semicontinuous, the sequence zk converges w.l.o.g. to
some z 2 ZkðvÞ. By Theorem 2.4, z 2 EðZÞ implies that there is a sequence
ðxkÞk2N 2 X satisfying xk 2 f�1ðzkÞ, k 2 N, which converges to some
x 2 f�1ðzÞ. Choose y 2 f�1ðwÞ and set r :¼ y� x. Now p :X! X, defined
by

pðuÞ :¼ uþ supft 2 ½0; 1�juþ tr 2 Xg � r

is continuous by Theorem 2.3. Therefore, the ‘‘projected sequence’’
yk :¼ xk þ akr : ¼ pðxkÞ, k 2 N, converges to y ¼ pðxÞ, and consequently,
wk :¼ fðykÞ converges to w ¼ fðyÞ. Moreover, by Lemma 3.1,

wk ¼ fðxk þ akrÞ ¼
xk

T
C1x

k þ c1
T
xk þ akc1

T
rþ c1

..

.

xk
T
Cqx

k þ cqTxk þ akcq
Trþ cq

0
BB@

1
CCA

¼ fðxkÞ þ ak

c1
T
r

..

.

cqTr

0
BB@

1
CCA ¼ zk þ ak

c1
T
r

..

.

cqTr

0
BB@

1
CCA; k 2 N;

and
Pq

i¼1 kici
T
r ¼ 0. For

Hk :¼fu 2 RqjkTu ¼ kTzkg;
this implies wk 2 Hk \ Z. In addition, ZkðvkÞ is obviously given by

ZkðvkÞ ¼ Hk \ ZðvkÞ ¼ Hk \ Z \ ðvk þ R
q
þÞ:

Now

wk � vk !k!1w� v 2 R
q
þ;

i.e., dðwk; vk þ R
q
þÞ ! 0 for k!1, and it follows that dðwk;ZkðvkÞÞ ! 0

for k!1. Since wk converges to w, there is a sequence uk 2 ZkðvkÞ,
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k 2 N, which is also converging to w. Thus, we have shown that ZkðvÞ is
lower semicontinuous. (

COROLLARY 3.1 Let X � Rn be a convex polyhedron, f : Rn ! Rq be
concave quadratic. Then, the Domination Problem is stable.

Proof. Since EðZÞ is closed, it is easily seen that EðZðvÞÞ ¼
EðZÞ \ ðvþ R

q
þÞ is upper semicontinuous. We will again show that the

mapping is also lower semicontinuous.
Choose v 2 Z� R

q
þ, w 2 EðZðvÞÞ and ðvkÞk2N � Z� R

q
þ converging to v.

By Arrow, Barankin and Blackwell’s Theorem 2.1, for each e > 0 there is
y 2 PðZðvÞÞ such that kw� yk < e=2. Since y is properly efficient, there is
k 2 intRq

þ satisfying y 2 ZkðvÞ. Then by Theorem 3.1, for k sufficiently large
there is z 2 ZkðvkÞ � EðZðvkÞÞ satisfying kz� yk < e=2, hence kw� zk < e.
This implies lower semicontinuity of EðZðvÞÞ. (

4. Application to Benson’s Method

Contrary to classical compromise programming, where compromises
between a feasible point and an ideal or utopia point are considered (cf.
[20]), we define any v 2 Z to constitute a t-compromise between two feasi-
ble points v0, v1 2 Z iff vPvðtÞ, where

vðtÞ :¼ð1� tÞv0 þ tv1; t 2 ½0; 1�:

A compromise is called efficient t-compromise iff in addition, v 2 EðZÞ.
Now Benson’s single parametric method can be stated for the QMP as fol-
lows (cf. Guddat and Guerra [8]). Recall that for the QMP with EðZÞ 6¼,
ZkðvÞ 6¼ [ for all v 2 Z� R

q
þ.

ALGORITHM 4.1. Let X � Rn be a convex polyhedron, f :Rn ! Rq be
concave quadratic.

Step 0:

i(i) Compute x 2 X by applying a method of linear optimization (cf. [7]).
If no feasible point can be found, X ¼ [, STOP.

(ii) Choose k 2 int R
q
þ and compute v0 2 EðZÞ by applying a method of

quadratic optimization with quadratic constraints (cf. [6,11]) to
MPkðfðxÞÞ. If no point in ZkðfðxÞÞ can be found, EðZÞ ¼ ;, STOP.

Step k, k 2 N:

ii(i) The DM enters the least outcome value vk 2 Rq.
i(ii) Define vðtÞ :¼ð1� tÞvk�1 þ avk, t 2 ½0; 1�, and
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t0 :¼ maxft 2 ½0; 1�jvðtÞ 2 Z� R
q
þg:

Compute an efficient compromise arc between vð0Þ and vðt0Þ, i.e., an
arc a : ½0; t0� ! Z such that aðtÞ is an efficient t-compromise for all
t 2 ½0; t0�. The DM chooses his/her preferred efficient compromise
aðtÞ.

(iii) If �ðtÞ is accepted by the DM, STOP, else redefine vk :¼ �ðtÞ
and continue with step kþ 1.

The algorithm can be applied by a single DM who would like to explore
which efficient solutions are possible depending on the least outcome value.
For two DMs, the algorithm could be operated by DM A if k is uneven
and by DM B if k is even. Then in each step, an arc of efficient compro-
mises between their preferences is computed.
For ease of notation, we will restrict ourselves to considering step 1 and

assuming w.l.o.g. v1 2 Z, else replace v1 by vðt0Þ. Then in phase ðiiÞ, the
algorithm solves the single-parametric optimization problem MPkðvðtÞÞ,
t 2 ½0; 1�. For fixed N 2 N, this parametric problem is usually solved by
computing solutions to the discrete problem MPkðvði=NÞÞ, i ¼ 0; . . . ;N (cf.
[10]). Obviously each z 2 ZkðvðtÞÞ, t 2 ½0; 1�, is an efficient t-compromise,
but in general, arbitrary selection does not yield an efficient compromise
arc. Guddat and Guerra [10] analyzed the parametric problem MPkðvðtÞÞ
for the general MP. In their paper, conditions for the existence of a unique
solution for each t 2 ½0; 1� are investigated, since in this case the mapping
ZkðvðtÞÞ, t 2 ½0; 1�, constitutes an efficient compromise arc.
In the following, we will again consider the QMP, and construct an effi-

cient compromise arc without the conditions imposed in [10] by employing
the lexicographic optimization problem

MPkðvðtÞÞ: min !fkzkjz 2 ZkðvðtÞÞg; t 2 ½0; 1�: ð3Þ

Since ZkðvðtÞÞ is compact convex and the Euclidean norm k � k is strictly
convex, for each t 2 ½0; 1� there is a unique solution zðtÞ to MPkðvðtÞÞ.
THEOREM 4.1. Let X � Rn be a convex polyhedron, f :Rn ! Rq be concave
quadratic and k 2 int R

q
þ. Then:

i(i) MPkðvðtÞÞ is stable, i.e., the mapping t 7!ZkðvðtÞÞ, t 2 ½0; 1�, is continu-
ous.

(ii) MPkðvðtÞÞ is stable, i.e., the mapping t 7! zðtÞ, t 2 ½0; 1�, is continuous.
In particular, zðtÞ, t 2 ½0; 1�, is an efficient compromise arc.

Proof. (i) The assertion is a direct consequence of Theorem 3.1.
(ii) Let ðtkÞk2N � ½0; 1� converge to t 2 ½0; 1�. Since ZkðvðtÞÞ is compact,

there is an accumulation point y 2 ZkðvðtÞÞ of zðtkÞ. Moreover, by (i) there
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is a sequence yk 2 ZkðvðtkÞÞ, k 2 N, converging to y. Now, in case of
kyk < kzðtÞk, it follows that kykk < kzðtkÞk for some k 2 N, contradicting
the definition of zðtkÞ. Therefore, kyk ¼ kzðtÞk holds, and since zðtÞ is the
unique solution to MPkðvðtÞÞ, it follows that y ¼ zðtÞ. (

5. Numerical Realization of the Method

In this section, we will deduce a polynomial time method for the computa-
tion of zðtÞ. For each v 2 Z� R

q
þ, MPkðvÞ constitutes an optimization prob-

lem with (concave) quadratic target function and (concave) quadratic
constraints, thus the set XkðvÞ is given by a cut of finitely many quadrics.
We will first show that the sets XkðvÞ and ZkðvÞ are even convex polyhedra.

THEOREM 5.1. Let X � Rn be a convex polyhedron, f :Rn ! Rq be concave
quadratic and k 2 int R

q
þ. Then for each v 2 Z� R

q
þ, the sets XkðvÞ and ZkðvÞ

are convex polyhedra.

Proof. Choose v 2 Z� R
q
þ and x0 2 XkðvÞ. Then clearly,

XkðvÞ ¼ fx 2 XjfðxÞPv; kTfðxÞ ¼ kTfðx0Þg:

Moreover, Lemma 3.1 implies that Cix ¼ Cix
0 holds for each x 2 XkðvÞ,

i.e., the vector wiðvÞ :¼Cix
0 is independent of x0 and

fiðxÞ ¼ ðwiðvÞ þ ciÞTxþ ci; x 2 XkðvÞ; i ¼ 1; . . . ; q:

Thus,

XkðvÞ ¼ fx 2 Xj ðwiðvÞ þ ciÞTxþ ciPvi; i ¼ 1; . . . ; q;

Xq

i¼1
kiðwiðvÞ þ ciÞ

 !T

xþ kTc ¼ kTfðx0Þ;

wiðvÞ ¼ Cix; i ¼ 1; . . . ; qg;

ð4Þ

i.e., XkðvÞ is a convex polyhedron. Moreover, ZkðvÞ is a convex polyhedron
since f is linear on XkðvÞ. (

Now step ðiiÞ of algorithm 4.1 is modified as follows:
(iia) Choose N 2 N and compute a solution x0ði=NÞ to MPkðvði=NÞÞ,

i ¼ 0; . . . ;N.
(iib) Compute the unique solution zði=NÞ to MPkðvði=NÞÞ, i ¼ 0; . . . ;N. Set

Di :¼ðC1x
0ði=NÞ þ c1; . . . ;Cqx

0ði=NÞ þ cqÞT 2 Rq�n; i ¼ 0; . . . ;N;

ð5Þ
and c :¼ðc1; . . . ; cqÞT 2 Rq, then for x 2 Xkðvði=NÞÞ
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kfðxÞk2 ¼ kDixþ ck2 ¼ xTDT
i Dixþ 2cTDixþ cTc:

Consequently, MPkðvði=NÞÞ is equivalent to
min!fxTDT

i Dixþ 2cTDixjx 2 Xkðvði=NÞÞg; ð6Þ

where Xkðvði=NÞÞ is given by (4), i.e., it suffices to compute solutions
xði=NÞ to this problem. Since DT

i Di, i ¼ 0; . . . ;N, is positive semidefinite,
these problems constitute convex quadratic optimization problems, which
can be solved in polynomial time (cf. [16]). In summary, zði=NÞ :¼
fðxði=NÞÞ, i ¼ 0; . . . ;N, are points located on an efficient compromise arc.

6. The Domination Property of the Weakly Efficient Set

We conclude our paper by discussing the weak Domination Property, that
is, the Domination Property for the set of weakly efficient points. Note
that even for the convex MP, this property does in general not hold [17].

THEOREM 6.1. Let X � Rn be a convex polyhedron, f:Rn ! Rq be concave
quadratic, WðfðXÞÞ be nonempty. Then, the weak Domination Property holds.

Proof. Choose k 2 R
q
þ n f0g such that

max !fkTfðxÞjx 2 Xg
is solvable, i.e., the interval I :¼ kTfðXÞ � Rþ is bounded from above.
Choose v 2 Z� R

q
þ. Now the interval J :¼ kTfðXðvÞÞ � Rþ is closed, since

kTf :Rn ! R is concave quadratic (cf. [12]). Moreover, we have that J � I,
thus J is bounded from above. Consequently, there is a solution x1 2 XðvÞ
to MPkðvÞ, which is obviously weakly efficient in XðvÞ. (
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